The process of association and tracking of sensor detections is a key element in providing situational awareness. When the targets in the scenario are dense and exhibit high maneuverability, Multi-Target Tracking (MTT) becomes a challenging task. The conventional techniques to solve such NP-hard combinatorial optimization problem involves multiple complex models and requires tedious tuning of parameters, failing to provide an acceptable performance within the computational constraints. This paper proposes a model free end-to-end approach for airborne target tracking system using sensor measurements, integrating all the key elements of multi target tracking -- association, prediction and filtering using deep learning with memory. The challenging task of association is performed using the Bi-Directional Long short-term memory (LSTM) whereas filtering and prediction are done using LSTM models. The proposed modular blocks can be independently trained and used in multitude of tracking applications including non co-operative (e.g., radar) and co-operative sensors (e.g., AIS, IFF, ADS-B). Such modular blocks also enhances the interpretability of the deep learning application. It is shown that performance of the proposed technique outperforms conventional state of the art technique Joint Probabilistic Data Association with Interacting Multiple Model (JPDA-IMM) filter.
翻译:结合和跟踪传感器探测的过程是提供情况认识的一个关键要素。当情景中的目标密度大且具有高度可操作性时,多目标跟踪(MTT)就是一项具有挑战性的任务。解决这种NP硬组合优化问题的常规技术涉及多重复杂模型,要求对参数进行烦琐的调整,无法在计算限制范围内提供可接受的性能。本文件提议对空中目标跟踪系统采用一个无模式的端对端方法,使用传感器测量,将多目标跟踪的所有关键要素 -- -- 结合、预测和过滤 -- -- 利用记忆深学习进行深入学习。联系的艰巨任务是使用双向短期内存(LSTM)来完成,而过滤和预测则是使用LSTM模型来完成。拟议的模块块可以独立培训,用于多种跟踪应用,包括不合作(例如雷达)和操作传感器(例如AIS、IFF、ADS-B)和操作式传感器(例如AIS、IDS-B),这些模块块还加强了深层次学习应用的可解释性。它具有挑战性的任务是使用双向性联合模型。它(MDMDMA) 常规状态。它与MDMDMLA MADMLA 的多种常规状态外技术的模型。它的表现表明,它与MDMDMDMDMDMDMDMDMDM的模型的演制外的演化常规状态。