Location information offered by external positioning systems, e.g., satellite navigation, can be used as prior information in the process of beam alignment and channel parameter estimation for reconfigurable intelligent surface (RIS)-aided millimeter wave (mmWave) multiple-input multiple-output networks. Benefiting from the availability of such prior information, albeit imperfect, the beam alignment and channel parameter estimation processes can be significantly accelerated with less candidate beams explored at all the terminals. We propose a practical channel parameter estimation method via atomic norm minimization, which outperforms the standard beam alignment in terms of both the mean square error and the effective spectrum efficiency for the same training overhead.
翻译:外部定位系统(如卫星导航)提供的位置信息,可用作用于对可重新配置智能表面(RIS)辅助毫米波(mmWave)多投入多产出网络进行射线校正和频道参数估计过程中的事先信息。利用这种先前信息的可获得性(尽管不完善),光束校正和频道参数估计程序可以大大加快速度,在所有终端中探索的候选光束较少。我们提议通过原子规范最小化来采用实用的频道参数估计方法,该方法在平均平方误差和同一培训间接费用的有效频谱效率两方面都超过了标准波束校准。