We propose novel optimal and parameter-free algorithms for computing an approximate solution for smooth optimization with small (projected) gradient norm. Specifically, for computing an approximate solution such that the norm of the (projected) gradient is not greater than $\varepsilon$, we have the following results for the cases of convex, strongly convex, and nonconvex problems: a) for the convex case, the total number of gradient evaluations is bounded by $O(1)\sqrt{L\|x_0 - x^*\|\varepsilon}$, where $L$ is the Lipschitz constant of the gradient function and $x^*$ is any optimal solution; b) for the strongly convex case, the total number of gradient evaluations is bounded by $O(1)\sqrt{L/\mu}\log(\|\nabla f(x_0)\|)$, where $\mu$ is the strong convexity constant; c) for the nonconvex case, the total number of gradient evaluations is bounded by $O(1)\sqrt{Ll}(f(x_0) - f(x^*))/\varepsilon^2$, where $l$ is the lower curvature constant. Our complexity results match the lower complexity bounds of all three cases of problems. Our analysis can be applied to both unconstrained problems and problems with constrained feasible sets; we demonstrate our strategy for analyzing the complexity of computing solutions with small projected gradient norm in the convex case. For all the convex, strongly convex, and nonconvex cases, we also propose parameter-free algorithms that does not require the knowledge of any problem parameter. To the best of our knowledge, our paper is the first one that achieves the $O(1)\sqrt{L\|x_0 - x^*\|/\varepsilon}$ complexity for convex problems with constraint feasible sets, the $O(1)\sqrt{Ll}(f(x_0) - f(x^*))/\varepsilon$ complexity for nonconvex problems, and optimal complexities for convex, strongly convex, and nonconvex problems through parameter-free algorithms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【机器学习术语宝典】机器学习中英文术语表
专知会员服务
60+阅读 · 2020年7月12日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
145+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
60+阅读 · 2020年7月12日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
145+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员