The $\rho$-calculus (Reflective Higher-Order Calculus) of Meredith and Radestock is a $\pi$-calculus-like language with some unusual features, notably, structured names, runtime generation of free names, and the lack of an operator for scoping visibility of names. These features pose some interesting difficulties for proofs of encodability and separation results. We describe two errors in a previously published attempt to encode the $\pi$-calculus in the $\rho$-calculus by Meredith and Radestock. Then we give a new encoding and prove its correctness, using a set of encodability criteria close to those proposed by Gorla, and discuss the adaptations necessary to work with a calculus with runtime generation of structured names. Lastly we prove a separation result, showing that the $\rho$-calculus cannot be encoded in the $\pi$-calculus.
翻译:Meredith 和 Radestock 的 $rho$-calulus (Refective level- Order Calculus) 和 Radestock 的 $rho$- calculus (Refective Superal- Order-Calculus) 是 美元-calulus 和 Radestock 的一种类似 $-pi-calculus 的语言, 具有一些不同寻常的特点, 特别是结构化名称、 运行时自由名称的生成, 以及没有操作者来界定地名的可见度。 这些特征对可识别性和分离结果的证明造成了一些有趣的困难。 我们描述了在此前出版的 Meredith 和 Radestock 的 $rho$- calculuus 编码 $\ prhoculus 中的两个错误 。 然后我们使用一套接近 Gorla 提议的编码标准提供新的编码并证明其正确性。 我们讨论与计算出与计算结构名称运行时生成时间生成的积积的积的积。 最后, 我们证明分离结果, 显示 $\ $- calulus 无法以 cculus 编码。 。