This paper introduces a new accurate model for periodic fractional optimal control problems (PFOCPs) using Riemann-Liouville (RL) and Caputo fractional derivatives (FDs) with sliding fixed memory lengths. The paper also provides a novel numerical method for solving PFOCPs using Fourier and Gegenbauer pseudospectral methods. By employing Fourier collocation at equally spaced nodes and Fourier and Gegenbauer quadratures, the method transforms the PFOCP into a simple constrained nonlinear programming problem (NLP) that can be treated easily using standard NLP solvers. We propose a new transformation that largely simplifies the problem of calculating the periodic FDs of periodic functions to the problem of evaluating the integral of the first derivatives of their trigonometric Lagrange interpolating polynomials, which can be treated accurately and efficiently using Gegenbauer quadratures. We introduce the notion of the {\alpha}th-order fractional integration matrix with index L based on Fourier and Gegenbauer pseudospectral approximations, which proves to be very effective in computing periodic FDs. We also provide a rigorous priori error analysis to predict the quality of the Fourier-Gegenbauer-based approximations to FDs. The numerical results of the benchmark PFOCP demonstrate the performance of the proposed pseudospectral method.
翻译:本文提出了一种新的精确周期分数阶最优控制问题(PFOCPs)模型,该模型采用具有滑动固定记忆长度的Riemann-Liouville (RL)和Caputo分数导数(FDs)。同时,本文还提供了一种利用傅里叶和格根鲍尔拟谱方法求解PFOCPs的新型数值方法。通过等距节点的傅里叶插值和傅里叶格根鲍尔积分,该方法将PFOCP转化为一个简单的约束非线性程序问题(NLP),可以使用标准NLP求解器轻松处理。我们提出了一种新的转换,大大简化了计算周期函数周期性FDs的问题,将其转化为计算正弦插值多项式的第一导数的积分问题,这可以使用格根鲍尔积分精确高效地处理。我们引入了基于傅里叶和格根鲍尔拟谱逼近的“α”次分数积分矩阵,该矩阵具有L指标,该方法在计算周期FDs方面非常有效。我们还提供了一个严格的先验误差分析,以预测基于傅里叶-格根鲍尔的FD近似的质量。基准PFOCP的数值结果证明了提出的拟谱方法的性能。