Learning with feature evolution studies the scenario where the features of the data streams can evolve, i.e., old features vanish and new features emerge. Its goal is to keep the model always performing well even when the features happen to evolve. To tackle this problem, canonical methods assume that the old features will vanish simultaneously and the new features themselves will emerge simultaneously as well. They also assume there is an overlapping period where old and new features both exist when the feature space starts to change. However, in reality, the feature evolution could be unpredictable, which means the features can vanish or emerge arbitrarily, causing the overlapping period incomplete. In this paper, we propose a novel paradigm: Prediction with Unpredictable Feature Evolution (PUFE) where the feature evolution is unpredictable. To address this problem, we fill the incomplete overlapping period and formulate it as a new matrix completion problem. We give a theoretical bound on the least number of observed entries to make the overlapping period intact. With this intact overlapping period, we leverage an ensemble method to take the advantage of both the old and new feature spaces without manually deciding which base models should be incorporated. Theoretical and experimental results validate that our method can always follow the best base models and thus realize the goal of learning with feature evolution.


翻译:以地貌进化为学习特征进化, 研究数据流特征可以演化的情景, 即, 老特征消失, 新的特征出现。 目标是保持模型运行良好, 即使特征发生演变。 为了解决这个问题, 直截了当的方法假设旧特征会同时消失, 新特征本身也会同时出现。 他们还假设存在一个重叠的时期, 当特征空间开始变化时, 旧和新特征都存在。 然而, 特性演化可能是不可预测的, 也就是说, 特征会消失或任意出现, 导致重叠期的不完整。 在本文中, 我们提出了一个新的范例: 以无法预测的地貌进化( PUFE) 来预测模式。 为了解决这个问题, 我们填充不完整的重叠期, 并将它写成一个新的矩阵完成问题。 我们从理论上将观察到的最少数量的条目捆绑在一起, 以使重叠期保持不变的时期保持完整。 我们利用一种混合的方法来利用旧的和新的特征空间的优势, 而不是手动地决定应该纳入哪些基本模型。 理论和实验结果验证我们的方法总是能够实现最佳的基本进化模式。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
156+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年2月20日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员