Semi-Supervised Learning (SSL) with mismatched classes deals with the problem that the classes-of-interests in the limited labeled data is only a subset of the classes in massive unlabeled data. As a result, the classes only possessed by the unlabeled data may mislead the classifier training and thus hindering the realistic landing of various SSL methods. To solve this problem, existing methods usually divide unlabeled data to in-distribution (ID) data and out-of-distribution (OOD) data, and directly discard or weaken the OOD data to avoid their adverse impact. In other words, they treat OOD data as completely useless and thus the potential valuable information for classification contained by them is totally ignored. To remedy this defect, this paper proposes a "Transferable OOD data Recycling" (TOOR) method which properly utilizes ID data as well as the "recyclable" OOD data to enrich the information for conducting class-mismatched SSL. Specifically, TOOR firstly attributes all unlabeled data to ID data or OOD data, among which the ID data are directly used for training. Then we treat the OOD data that have a close relationship with ID data and labeled data as recyclable, and employ adversarial domain adaptation to project them to the space of ID data and labeled data. In other words, the recyclability of an OOD datum is evaluated by its transferability, and the recyclable OOD data are transferred so that they are compatible with the distribution of known classes-of-interests. Consequently, our TOOR method extracts more information from unlabeled data than existing approaches, so it can achieve the improved performance which is demonstrated by the experiments on typical benchmark datasets.


翻译:具有不匹配类的半保密学习(SSL) 解决了以下问题: 有限标签数据中的利益等级只是大量无标签数据中的一个分类子。 结果, 仅由未标签数据拥有的类别可能会误导分类培训, 从而妨碍各种 SSL 方法的现实着陆。 为了解决这个问题, 现有方法通常将未标签数据分为分配( ID) 数据和分配( OOOD) 数据, 直接丢弃或削弱 OOOD 数据以避免其不利影响。 换句话说, 他们将OOOD 数据视为完全不兼容性, 从而完全忽略了它们所含的分类可能有价值的信息。 因此, 为了纠正这一缺陷, 仅由未标签数据持有的类别, 将“ 可翻译 OOOD 数据回收” (TOOR) 方法适当地使用ID 数据以及“ 可循环” OOLOD 数据来补充信息 。 具体地说, ToOR 将所有未标记的数据归为身份数据或 OOD 数据, 其中, ID 数据直接用于直接传输数据 。 IM 数据 数据转换后, 我们用 IMD 数据 数据变 数据 重新使用 数据 IMD 进行 数据 数据 数据 数据变 数据 使用 数据 数据, 代代代 代 代 代 代 代 数据 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 数据 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代

1
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
116+阅读 · 2019年12月24日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年8月15日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员