A substantial body of empirical work documents the lack of robustness in deep learning models to adversarial examples. Recent theoretical work proved that adversarial examples are ubiquitous in two-layers networks with sub-exponential width and ReLU or smooth activations, and multi-layer ReLU networks with sub-exponential width. We present a result of the same type, with no restriction on width and for general locally Lipschitz continuous activations. More precisely, given a neural network $f(\,\cdot\,;{\boldsymbol \theta})$ with random weights ${\boldsymbol \theta}$, and feature vector ${\boldsymbol x}$, we show that an adversarial example ${\boldsymbol x}'$ can be found with high probability along the direction of the gradient $\nabla_{{\boldsymbol x}}f({\boldsymbol x};{\boldsymbol \theta})$. Our proof is based on a Gaussian conditioning technique. Instead of proving that $f$ is approximately linear in a neighborhood of ${\boldsymbol x}$, we characterize the joint distribution of $f({\boldsymbol x};{\boldsymbol \theta})$ and $f({\boldsymbol x}';{\boldsymbol \theta})$ for ${\boldsymbol x}' = {\boldsymbol x}-s({\boldsymbol x})\nabla_{{\boldsymbol x}}f({\boldsymbol x};{\boldsymbol \theta})$.
翻译:大量经验性工作记录了深度学习模型缺乏强健性, 以对抗性实例。 最近的理论工作证明, 在两层网络中, 对抗性例子无处不在, 其重量为 $\ boldsymbol\ 平滑激活, 和多层 ReLU 网络, 其重量为 $\ boldsymbol x$。 我们展示的是, 类似类型的结果, 其宽度不受限制, 并且一般的本地 Lipschitz 连续激活。 更确切地说, 鉴于一个神经网络$f (\\,\ cd) ; boldsylsylsy $( bold) ; boldsylsylsy; 我们的证据以 $_ ballsylsy$ xbball_ blockaldchold 技术为基础; 我们的证据以 美元正值为正值的正值 。