The interpretation of deep neural networks (DNNs) has become a key topic as more and more people apply them to solve various problems and making critical decisions. Concept-based explanations have recently become a popular approach for post-hoc interpretation of DNNs. However, identifying human-understandable visual concepts that affect model decisions is a challenging task that is not easily addressed with automatic approaches. We present a novel human-in-the-loop approach to generate user-defined concepts for model interpretation and diagnostics. Central to our proposal is the use of active learning, where human knowledge and feedback are combined to train a concept extractor with very little human labeling effort. We integrate this process into an interactive system, ConceptExtract. Through two case studies, we show how our approach helps analyze model behavior and extract human-friendly concepts for different machine learning tasks and datasets and how to use these concepts to understand the predictions, compare model performance and make suggestions for model refinement. Quantitative experiments show that our active learning approach can accurately extract meaningful visual concepts. More importantly, by identifying visual concepts that negatively affect model performance, we develop the corresponding data augmentation strategy that consistently improves model performance.


翻译:对深神经网络(DNNs)的解释已成为一个关键议题,因为越来越多的人运用这些解释来解决各种问题和作出关键决定。基于概念的解释最近已成为对DNS的热后解释的流行方法。然而,确定影响模型决定的人类可理解的视觉概念是一项挑战性任务,不容易用自动方法加以解决。我们提出了一个新的“人到行间”方法,为模型解释和诊断生成用户定义的概念。我们提案的核心是使用积极学习,将人类知识和反馈结合起来,以培养概念提取器,而人类的标签努力很少。我们通过两个案例研究,将这一过程纳入互动系统“概念摘要”。我们展示了我们的方法如何帮助分析模型行为和为不同的机器学习任务和数据集提取对人友好的概念,以及如何利用这些概念理解预测、比较模型性能和为模型改进提出建议。定量实验表明,我们的积极学习方法可以准确地提取有意义的视觉概念。更重要的是,通过确定对模型性能产生不利影响的视觉概念,我们制定了相应的数据扩充战略,不断改进模型性能。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
50+阅读 · 2021年8月8日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2021年10月6日
Arxiv
35+阅读 · 2021年8月2日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员