This paper provides a general framework for testing instrument validity in heterogeneous causal effect models. We first generalize the testable implications of the instrument validity assumption provided by Balke and Pearl (1997), Imbens and Rubin (1997), and Heckman and Vytlacil (2005). The generalization involves the cases where the treatment can be multivalued (and ordered) or unordered, and there can be conditioning covariates. Based on these testable implications, we propose a nonparametric test which is proved to be asymptotically size controlled and consistent. Because of the nonstandard nature of the problem in question, the test statistic is constructed based on a nonsmooth map, which causes technical complications. We provide an extended continuous mapping theorem and an extended delta method, which may be of independent interest, to establish the asymptotic distribution of the test statistic under null. We then extend the bootstrap method proposed by Fang and Santos (2018) to approximate this asymptotic distribution and construct a critical value for the test. Compared to the test proposed by Kitagawa (2015), our test can be applied in more general settings and may achieve power improvement. Evidence that the test performs well on finite samples is provided via simulations. We revisit the empirical study of Card (1993) and use their data to demonstrate application of the proposed test in practice. We show that a valid instrument for a multivalued treatment may not remain valid if the treatment is coarsened.
翻译:本文为各种因果关系模型测试仪器有效性提供了一个总体框架。我们首先概括了Balke和Pearl(1997年)、Imbens和Rubin(1997年)、Heckman和Vytlacil(2005年)提供的仪器有效性假设的可测试影响。我们首先概括了Balke和Pearl(1997年)、Imbens和Rubin(1997年)、Heckman和Heckman和Vytlacil(2005年)提供的仪器有效性假设的可测试影响。一般化涉及可多价值(和订购)或无顺序的治疗,而且可以调节共变数。根据这些可测试影响,我们提出了一个非参数性测试,该测试被证明是轻巧的,大小是控制的和一致的。由于问题的非标准性质,测试数据根据非标准性地图构建,因此,测试数据根据造成技术并发症。我们提供了一个扩展的连续连续的标本和扩展的三角洲方法,可能具有独立兴趣,以便在无效的情况下确定试验的分布分布分布。我们提出的一个测试方法可以用来进行模拟测试。我们提出的一个用于进行模拟的试算的试度测试的模型,可以用来进行。