Finding software vulnerabilities in concurrent programs is a challenging task due to the size of the state-space exploration, as the number of interleavings grows exponentially with the number of program threads and statements. We propose and evaluate EBF (Ensembles of Bounded Model Checking with Fuzzing) -- a technique that combines Bounded Model Checking (BMC) and Gray-Box Fuzzing (GBF) to find software vulnerabilities in concurrent programs. Since there are no publicly-available GBF tools for concurrent code, we first propose a novel concurrency-aware gray-box fuzzer that explores different thread schedules by instrumenting the code under test with random delays controlled by the fuzzing engine. Then, we build an ensemble of one BMC and one GBF tool in the following way. On the one hand, when the BMC tool in the ensemble returns a counterexample, we use it as a seed for our GBF tool, thus increasing the likelihood of executing paths guarded by complex mathematical expressions. On the other hand, we aggregate the outcomes of the BMC and GBF tools in the ensemble using a decision matrix, thus improving the accuracy of EBF. We evaluate EBF against state-of-the-art pure BMC tools and show that it can generate up to 14.9% more correct verification witnesses than BMC alone. Furthermore, we demonstrate the efficacy of our concurrency-aware GBF by showing that it can find 21.4% of the vulnerabilities in our evaluation suite, while non-concurrency-aware GBF tools can only find 0.55%. Finally, thanks to our concurrency-aware GBF tool, EBF detects a data race in the open-source wolfMqtt library, which demonstrates its effectiveness in finding vulnerabilities in real-world software.


翻译:在同时的程序中查找软件脆弱性是一项具有挑战性的任务,因为州-空间探索的规模很大,因此,随着程序线索和语句的数量的增多,互换功能的数量成倍增长。我们提议和评价EBF(使用模糊模型检查与模糊) -- -- 一种结合了闪烁模型检查(BMC)和格雷-布克斯法辛(GGBF)的技术,以便在同时的程序中找到软件脆弱性。由于没有公开可用的 GBF 工具,因此我们首先提议一种新型的货币觉悟工具,用于同时代码,因此,我们首先提议一种新颖的、货币觉悟的灰盒灰盒发泡器,它通过在测试中以随机的延迟来检测代码5,来探索不同的线程。然后,我们用一种方法建立一个混合模型模型(BMC)和一个GMFFM工具的组合。一方面,当BMC工具返回了一个反解析时,我们用GMFA工具的配置方式,这样可以找到复杂的数学表达工具。 另一方面,我们用BMC和GBBFFMF的精度来测量它的精度, 我们用BMF的精度工具的精度显示它的精度工具的精度。

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员