Diabetic retinopathy (DR) remains the most prevalent cause of vision impairment and irreversible blindness in the working-age adults. Due to the renaissance of deep learning (DL), DL-based DR diagnosis has become a promising tool for the early screening and severity grading of DR. However, training deep neural networks (DNNs) requires an enormous amount of carefully labeled data. Noisy label data may be introduced when labeling plenty of data, degrading the performance of models. In this work, we propose a novel label management mechanism (LMM) for the DNN to overcome overfitting on the noisy data. LMM utilizes maximum posteriori probability (MAP) in the Bayesian statistic and time-weighted technique to selectively correct the labels of unclean data, which gradually purify the training data and improve classification performance. Comprehensive experiments on both synthetic noise data (Messidor \& our collected DR dataset) and real-world noise data (ANIMAL-10N) demonstrated that LMM could boost performance of models and is superior to three state-of-the-art methods.
翻译:由于深层次学习(DL)的复兴,基于DL的DR诊断已成为对DR进行早期筛选和严格分级的一个很有希望的工具。然而,培训深神经网络需要大量经过仔细标签的数据。在标注大量数据时,可以引入噪音标签数据,降低模型的性能。在这项工作中,我们提议为DNN建立一个新的标签管理机制(LMM),以便DN能够克服过度适应吵闹的数据。LMM利用Bayesian统计和时间加权技术中的最大附带概率(MAP)有选择地纠正污秽数据的标签,这些标签逐渐净化培训数据并改进分类性能。合成噪音数据(Messidor =我们收集的DR数据集)和真实世界噪音数据(AMM)的全面实验表明,LMM能够提高模型的性能,并且优于三种最先进的方法。