One-shot coupling is a method of bounding the convergence rate between two copies of a Markov chain in total variation distance. The method is divided into two parts: the contraction phase, when the chains converge in expected distance and the coalescing phase, which occurs at the last iteration, when there is an attempt to couple. The method closely resembles the common random number technique used for simulation. In this paper, we present a general theorem for finding the upper bound on the Markov chain convergence rate that uses the one-shot coupling method. Our theorem does not require the use of any exogenous variables like a drift function or minorization constant. We then apply the general theorem to two families of Markov chains: the random functional autoregressive process and the randomly scaled iterated random function. We provide multiple examples of how the theorem can be used on various models including ones in high dimensions. These examples illustrate how theorem's conditions can be verified in a straightforward way. The one-shot coupling method appears to generate tight geometric convergence rate bounds.
翻译:单点连接是将Markov链条两份副本的趋同率捆绑在完全变异的距离中的一种方法。 方法分为两个部分: 收缩阶段, 当链条在预期距离中汇合时, 和联结阶段, 是在最后一次迭代时发生, 当尝试对齐时 。 方法非常类似用于模拟的常见随机数技术 。 在本文中, 我们提出了一个用于找到使用单点组合法的 Markov 链条趋同率的上界的一般理论。 我们的理论并不要求使用任何外源变量, 如漂移函数或小化常数。 我们然后对Markov 链的两组组合应用一般理论: 随机功能递增过程和随机缩放的迭代随机函数。 我们提供了多个例子, 说明这些模型如何用于各种模型, 包括高维度模型。 这些示例说明了如何用直截的办法来验证这些对象的条件 。 单点组合方法似乎产生近几何趋融合率的边框 。