While improving prediction accuracy has been the focus of machine learning in recent years, this alone does not suffice for reliable decision-making. Deploying learning systems in consequential settings also requires calibrating and communicating the uncertainty of predictions. To convey instance-wise uncertainty for prediction tasks, we show how to generate set-valued predictions from a black-box predictor that control the expected loss on future test points at a user-specified level. Our approach provides explicit finite-sample guarantees for any dataset by using a holdout set to calibrate the size of the prediction sets. This framework enables simple, distribution-free, rigorous error control for many tasks, and we demonstrate it in five large-scale machine learning problems: (1) classification problems where some mistakes are more costly than others; (2) multi-label classification, where each observation has multiple associated labels; (3) classification problems where the labels have a hierarchical structure; (4) image segmentation, where we wish to predict a set of pixels containing an object of interest; and (5) protein structure prediction. Lastly, we discuss extensions to uncertainty quantification for ranking, metric learning and distributionally robust learning.
翻译:虽然近年来提高预测准确性一直是机器学习的重点,但这本身并不足以进行可靠的决策。在随之而来的环境中部署学习系统也需要校准和通报预测的不确定性。为了传达预测任务以实例为根据的不确定性,我们展示了如何从一个黑盒预测器中产生定值预测,以控制未来测试点在用户指定的层次上的预期损失。我们的方法为任何数据集提供了明确的有限抽样保障,即使用一个屏蔽装置来校准预测数据集的大小。这个框架为许多任务提供了简单、无分配、严格的错误控制,我们用五个大型机器学习问题来证明这一点:(1) 分类问题,因为有些错误比其他错误更昂贵;(2) 多标签分类,因为每个观察器都有多个相关的标签;(3) 分类问题,因为标签具有等级结构;(4) 图像分割,我们希望在其中预测一组含有一个对象的像素;以及(5) 蛋白质结构预测。最后,我们讨论为分级、计量学习和分配稳健的学习提供不确定的量化。