With the increasing popularity of deep learning, Convolutional Neural Networks (CNNs) have been widely applied in various domains, such as image classification and object detection, and achieve stunning success in terms of their high accuracy over the traditional statistical methods. To exploit the potential of CNN models, a huge amount of research and industry efforts have been devoted to optimizing CNNs. Among these endeavors, CNN architecture design has attracted tremendous attention because of its great potential of improving model accuracy or reducing model complexity. However, existing work either introduces repeated training overhead in the search process or lacks an interpretable metric to guide the design. To clear these hurdles, we propose 3D-Receptive Field (3DRF), an explainable and easy-to-compute metric, to estimate the quality of a CNN architecture and guide the search process of designs. To validate the effectiveness of 3DRF, we build a static optimizer to improve the CNN architectures at both the stage level and the kernel level. Our optimizer not only provides a clear and reproducible procedure but also mitigates unnecessary training efforts in the architecture search process. Extensive experiments and studies show that the models generated by our optimizer can achieve up to 5.47% accuracy improvement and up to 65.38% parameters deduction, compared with state-of-the-art CNN structures like MobileNet and ResNet.


翻译:随着深层学习的日益普及,革命神经网络(CNNs)被广泛应用于各个领域,例如图像分类和物体探测等领域,在传统统计方法的高度精准性方面取得了惊人的成功。为了利用CNN模型的潜力,已经投入了大量研究和工业努力来优化CNN。在这些努力中,CNN的建筑设计吸引了极大的关注,因为它具有提高模型准确性或降低模型复杂性的巨大潜力。然而,现有的工作要么在搜索过程中反复引入了培训间接费用,要么在设计过程中缺乏可解释的指标来指导设计。为了清除这些障碍,我们建议3D受控字段(3DRF),这是一个可解释的、易于比较的计量标准,以估计CNN架构的质量并指导设计过程的搜索过程。为了验证3DRF的效能,我们建立了一个静态优化器,以改进CNNC架构的阶段和内核层面。我们的优化器不仅提供了清晰和可复制的程序,而且还减少了建筑搜索过程中不必要的培训努力。我们提议了3D-受控域域域域域(3DRRF),一个可解释的、可解释和易于理解的计量的计量的计量的计量的计量的计量标准,以便估计CNNCNCRM-47的模型的精确度结构升级的精确度结构结构可以达到5-47的精确度。我们生成的模型和精确度。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
273+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2021年3月15日
Arxiv
4+阅读 · 2020年9月28日
Arxiv
7+阅读 · 2020年6月29日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
5+阅读 · 2017年9月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员