Vertical federated learning (VFL) leverages various privacy-preserving algorithms, e.g., homomorphic encryption or secret sharing based SecureBoost, to ensure data privacy. However, these algorithms all require a semi-honest secure definition, which raises concerns in real-world applications. In this paper, we present Aegis, a trusted, automatic, and accurate verification framework to verify the security of VFL jobs. Aegis is separated from local parties to ensure the security of the framework. Furthermore, it automatically adapts to evolving VFL algorithms by defining the VFL job as a finite state machine to uniformly verify different algorithms and reproduce the entire job to provide more accurate verification. We implement and evaluate Aegis with different threat models on financial and medical datasets. Evaluation results show that: 1) Aegis can detect 95% threat models, and 2) it provides fine-grained verification results within 84% of the total VFL job time.
翻译:垂直联合学习(VFL) 利用各种隐私保护算法,例如同质加密或秘密共享(SecreetBoost)等,确保数据隐私。然而,这些算法都需要一个半诚实的安全定义,这引起了现实世界应用程序的关切。在本文中,我们介绍Aegis,一个可靠、自动和准确的核查框架,以核实VFL工作的安全性。Aegis与当地各方分离,以确保框架的安全性。此外,它自动适应VFL算法的变化,将VFL工作定义为一个限定的国家机器,统一核查不同的算法,复制整个工作,以提供更准确的核实。我们用不同的财务和医疗数据威胁模型执行和评估Aegis。评价结果显示:(1) Aegis可以检测95%的威胁模型,和(2) 它在VFL总工作时间内的84%内提供精细的核查结果。