We study the differentially private multi group aggregation (PMGA) problem. This setting involves a single server and $n$ users. Each user belongs to one of $k$ distinct groups and holds a discrete value. The goal is to design schemes that allow the server to find the aggregate (sum) of the values in each group (with high accuracy) under communication and local differential privacy constraints. The privacy constraint guarantees that the user's group remains private. This is motivated by applications where a user's group can reveal sensitive information, such as his religious and political beliefs, health condition, or race. We propose a novel scheme, dubbed Query and Aggregate (Q\&A) for PMGA. The novelty of Q\&A is that it is an interactive aggregation scheme. In Q\&A, each user is assigned a random query matrix, to which he sends the server an answer based on his group and value. We characterize the Q\&A scheme's performance in terms of accuracy (MSE), privacy, and communication. We compare Q\&A to the Randomized Group (RG) scheme, which is non-interactive and adapts existing randomized response schemes to the PMGA setting. We observe that typically Q\&A outperforms RG, in terms of privacy vs. utility, in the high privacy regime.
翻译:我们研究不同的私人多组集合问题。 这个设置涉及单一的服务器和一美元用户。 每个用户属于一个不同的小组, 并持有一个独立的价值。 目标是设计一些方案, 使服务器能够在通信和本地差异隐私的限制下找到每个群体( 高度精度) 的总值( 总和) 。 隐私限制保证用户的集团保持隐私。 这是由用户集团能够披露敏感信息, 诸如其宗教和政治信仰、 健康状况或种族的应用驱动的。 我们为 PMGA 提出了一个新颖的方案, 称为Query 和 suggun( ⁇ A) 。 QA 的新颖之处是它是一个互动的组合方案。 在 +A 中, 每个用户都有一个随机查询矩阵, 他根据自己的集团和价值向服务器发送一个答案。 我们从准确性( MSE )、 隐私、 隐私和 交流的角度来描述 QA 计划的业绩。 我们将 QA 与随机化的集团( RG) 计划进行比较, 计划是非互动性的, 将现有的通用系统 的保密性 设置 。