In recent years, a number of process-based anomaly detection schemes for Industrial Control Systems were proposed. In this work, we provide the first systematic analysis of such schemes, and introduce a taxonomy of properties that are verified by those detection systems. We then present a novel general framework to generate adversarial spoofing signals that violate physical properties of the system, and use the framework to analyze four anomaly detectors published at top security conferences. We find that three of those detectors are susceptible to a number of adversarial manipulations (e.g., spoofing with precomputed patterns), which we call Synthetic Sensor Spoofing and one is resilient against our attacks. We investigate the root of its resilience and demonstrate that it comes from the properties that we introduced. Our attacks reduce the Recall (True Positive Rate) of the attacked schemes making them not able to correctly detect anomalies. Thus, the vulnerabilities we discovered in the anomaly detectors show that (despite an original good detection performance), those detectors are not able to reliably learn physical properties of the system. Even attacks that prior work was expected to be resilient against (based on verified properties) were found to be successful. We argue that our findings demonstrate the need for both more complete attacks in datasets, and more critical analysis of process-based anomaly detectors. We plan to release our implementation as open-source, together with an extension of two public datasets with a set of Synthetic Sensor Spoofing attacks as generated by our framework.


翻译:近年来,为工业控制系统提出了一些基于程序的异常探测计划。在这项工作中,我们首次对此类计划进行了系统分析,并引入了由这些检测系统核查的属性分类。然后我们提出了一个新的总体框架,以生成侵犯系统物理特性的对抗性假冒信号,并使用这一框架分析在最高安全会议上公布的4个异常探测器。我们发现,其中3个探测器容易受到一些对抗性操纵(例如,用预设模式打折扣),我们称之为合成传感器潜伏,一个系统能够抵御我们的攻击。我们调查其复原力的根源,并表明其来源于我们引入的特性。我们的攻击减少了被攻击计划的回调(真实正率),使其无法正确检测异常现象。因此,我们在异常探测器中发现的弱点表明,(尽管最初的检测表现良好),这些探测器无法可靠地了解系统的物理特性。即使我们以前的工作预期能够完全抵御(基于已核实的属性的)攻击,但我们的恢复力来自我们引入的特性。我们发现,攻击的回调率计划是成功的。我们发现,我们需要通过更精确的系统数据分析来完成我们之前的工作,需要更精确地分析。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年2月7日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员