Energy usage monitoring on higher education campuses is an important step for providing satisfactory service, lowering costs and supporting the move to green energy. We present a collaboration between the Department of Statistics and Facilities Operations at an R1 research university to develop statistically based approaches for monitoring monthly energy usage and proportional yearly usage for several hundred utility accounts on campus. We compare the interpretability and power of model-free and model-based methods for detection of anomalous energy usage patterns in statistically similar groups of accounts. Ongoing conversation between the academic and operations teams enhances the practical utility of the project and enables implementation for the university. Our work highlights an application of thoughtful and continuing collaborative analysis using easy-to-understand statistical principles for real-world deployment.
翻译:高等教育校园的能源使用监测是提供令人满意的服务、降低成本和支持转向绿色能源的一个重要步骤,我们介绍了统计和设施业务部在一所R1研究大学的协作情况,以制定基于统计的方法,监测校园数百个公用事业账户的每月能源使用量和每年按比例使用量。我们比较了在统计上相似的账户中用于检测异常能源使用模式的无模型和基于模型的方法的可解释性和力量。学术和业务小组之间的持续对话增强了该项目的实际效用,并使大学得以实施。我们的工作强调运用易于理解的统计原则进行深思熟虑的持续合作分析,用于实际世界的部署。