LDP (Local Differential Privacy) has recently attracted much attention as a metric of data privacy that prevents the inference of personal data from obfuscated data in the local model. However, there are scenarios in which the adversary wants to perform re-identification attacks to link the obfuscated data to users in this model. LDP can cause excessive obfuscation and destroy the utility in these scenarios because it is not designed to directly prevent re-identification. In this paper, we propose a measure of reidentification risks, which we call PIE (Personal Information Entropy). The PIE is designed so that it directly prevents re-identification attacks in the local model. It lower-bounds the lowest possible re-identification error probability (i.e., Bayes error probability) of the adversary. We analyze the relation between LDP and the PIE, and analyze the PIE and utility in distribution estimation for two obfuscation mechanisms providing LDP. Through experiments, we show that when we consider re-identification as a privacy risk, LDP can cause excessive obfuscation and destroy the utility. Then we show that the PIE can be used to guarantee low re-identification risks for the local obfuscation mechanisms while keeping high utility.


翻译:本地差异隐私(LDP)最近作为数据隐私的衡量标准引起了人们的极大关注,它防止了个人数据从当地模型中模糊的数据中推断出,然而,有些情况是,对手希望进行重新识别攻击,将模糊的数据与该模型中的用户联系起来。LDP可能造成过度混淆,并破坏这些假设情景中的效用,因为其设计目的不是为了直接防止重新识别。在本文中,我们提议了一种重新识别风险的尺度,我们称之为PIE(个人信息 Entropy)。PIE的设计是为了直接防止当地模型中的重新识别攻击。它将对手的尽可能最低的重新识别误差概率(即Bayes误差概率)降低。我们分析了LDP与PIE之间的关系,并分析了提供LDP的两个模糊机制的分配估计的效用。我们通过实验表明,当我们考虑重新识别为隐私风险时,LDP可以造成过度的混淆,并摧毁当地模型中的再次识别错误概率。我们随后表明,使用PIEIE的低用途识别机制可以保证使用高的当地用途。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
243+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Nature 一周论文导读 | 2019 年 6 月 6 日
科研圈
7+阅读 · 2019年6月16日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年4月5日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Nature 一周论文导读 | 2019 年 6 月 6 日
科研圈
7+阅读 · 2019年6月16日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员