Curriculum learning begins to thrive in the speech enhancement area, which decouples the original spectrum estimation task into multiple easier sub-tasks to achieve better performance. Motivated by that, we propose a dual-branch attention-in-attention transformer dubbed DB-AIAT to handle both coarse- and fine-grained regions of the spectrum in parallel. From a complementary perspective, a magnitude masking branch is proposed to coarsely estimate the overall magnitude spectrum, and simultaneously a complex refining branch is elaborately designed to compensate for the missing spectral details and implicitly derive phase information. Within each branch, we propose a novel attention-in-attention transformer-based module to replace the conventional RNNs and temporal convolutional networks for temporal sequence modeling. Specifically, the proposed attention-in-attention transformer consists of adaptive temporal-frequency attention transformer blocks and an adaptive hierarchical attention module, aiming to capture long-term temporal-frequency dependencies and further aggregate global hierarchical contextual information. Experimental results on Voice Bank + DEMAND demonstrate that DB-AIAT yields state-of-the-art performance (e.g., 3.31 PESQ, 94.7% STOI and 10.79dB SSNR) over previous advanced systems with a relatively small model size (2.81M).


翻译:语言增强领域的课程学习开始蓬勃发展,使最初的频谱估计任务分化为多个更加容易的子任务,以取得更好的业绩。为此,我们提议一个名为DB-AIAT的双部门关注点和注意点变压器,以同时处理光谱中粗略和细微的变压器。从互补的角度出发,提议一个规模遮盖分支,以粗略估计总体规模的频谱,同时,一个复杂的精炼分支正在精心设计,以弥补缺失的光谱细节,并隐含地获取阶段信息。在每一个分支中,我们提出一个新的关注点变压器模块,以取代传统的RNNS和时间动态网络进行时间序列建模。具体地说,拟议的注意点变压器包括适应性时间频率变压器块和一个适应性分级关注模块,目的是捕捉长期的时频依赖性和进一步综合的全球等级背景信息。语音银行+DEANDAND的实验结果显示,DB-AIAT以关注点变换为关注点的模块,以取代传统的RNNNNNNN和时序序列系统(S-71.M.M.M.

0
下载
关闭预览

相关内容

语音增强是指当语音信号被各种各样的噪声干扰、甚至淹没后,从噪声背景中提取有用的语音信号,抑制、降低噪声干扰的技术。一句话,从含噪语音中提取尽可能纯净的原始语音。
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
104+阅读 · 2020年8月30日
【CVPR2020-百度】用于视觉识别的门控信道变换
专知会员服务
13+阅读 · 2020年3月30日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
利用 Universal Transformer,翻译将无往不利!
谷歌开发者
5+阅读 · 2018年9月4日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
Arxiv
6+阅读 · 2019年4月8日
Neural Speech Synthesis with Transformer Network
Arxiv
5+阅读 · 2019年1月30日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关VIP内容
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
104+阅读 · 2020年8月30日
【CVPR2020-百度】用于视觉识别的门控信道变换
专知会员服务
13+阅读 · 2020年3月30日
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
利用 Universal Transformer,翻译将无往不利!
谷歌开发者
5+阅读 · 2018年9月4日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
Top
微信扫码咨询专知VIP会员