This paper develops a new nonlinear filter, called Moment-based Kalman Filter (MKF), using the exact moment propagation method. Existing state estimation methods use linearization techniques or sampling points to compute approximate values of moments. However, moment propagation of probability distributions of random variables through nonlinear process and measurement models play a key role in the development of state estimation and directly affects their performance. The proposed moment propagation procedure can compute exact moments for non-Gaussian as well as non-independent Gaussian random variables. Thus, MKF can propagate exact moments of uncertain state variables up to any desired order. MKF is derivative-free and does not require tuning parameters. Moreover, MKF has the same computation time complexity as the extended or unscented Kalman filters, i.e., EKF and UKF. The experimental evaluations show that MKF is the preferred filter in comparison to EKF and UKF and outperforms both filters in non-Gaussian noise regimes.
翻译:本文开发了一个新的非线性过滤器,名为“基于运动的卡尔曼过滤器 ” ( MKF ), 使用精确的瞬间传播方法。 现有的州估算方法使用线性化技术或取样点来计算时间的近似值。 然而, 随机变量的概率分布通过非线性过程和测量模型的瞬间传播在国家估算的形成中起着关键作用, 并直接影响其性能。 拟议的瞬间传播程序可以计算非高加索和非独立高斯兰随机变量的准确时间。 因此, MKF 可以传播不确定变量的确切时刻, 直至任何理想的顺序。 MKF 是无衍生的, 不需要调控参数。 此外, MKF 与扩展或未授标的卡尔曼过滤器( 即 EKF 和 UKF ) 具有相同的计算时间复杂性。 实验性评估显示, MKF 是与 EKF 和 UKF 比较的首选过滤器, 并且超越了非加沙噪音系统中的两种过滤器。