Convolutional neural networks (CNNs) are widely used in image recognition. Numerous CNN models, such as LeNet, AlexNet, VGG, ResNet, and GoogLeNet, have been proposed by increasing the number of layers, to improve the performance of CNNs. However, performance deteriorates beyond a certain number of layers. Hence, hyperparameter optimisation is a more efficient way to improve CNNs. To validate this concept, a new algorithm based on simplified swarm optimisation is proposed to optimise the hyperparameters of the simplest CNN model, which is LeNet. The results of experiments conducted on the MNIST, Fashion MNIST, and Cifar10 datasets showed that the accuracy of the proposed algorithm is higher than the original LeNet model and PSO-LeNet and that it has a high potential to be extended to more complicated models, such as AlexNet.


翻译:革命神经网络(CNNs)被广泛用于图像识别。许多CNN模型,如LeNet、AlexNet、VGG、ResNet和GoogLeNet,都是通过增加层数来提出来提高CNN的性能的。但是,性能在一定的层数之外恶化。因此,超光谱优化是改进CNN的更有效方法。为了验证这个概念,建议采用基于简化的温和优化的新算法优化最简单的CNN模型的超参数,即LeNet。在MNIST、Fashion MNIST和Cifar10数据集上进行的实验结果表明,提议的算法的准确性高于原始的LeNet模型和PSO-LeNet, 并且它有很大潜力可以扩大到更复杂的模型,如AlexNet。

0
下载
关闭预览

相关内容

在贝叶斯统计中,超参数是先验分布的参数; 该术语用于将它们与所分析的基础系统的模型参数区分开。
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
59+阅读 · 2020年5月9日
《强化学习—使用 Open AI、TensorFlow和Keras实现》174页pdf
专知会员服务
136+阅读 · 2020年3月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
0+阅读 · 2021年10月7日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员