In this article, we particularly address the problem of assessing the impact of clinical stage and age on the specific survival times of men with breast cancer when cure is a possibility, where there is also the interest of explaining this impact on different quantiles of the survival times. To this end, we developed a quantile regression model for survival data in the presence of long-term survivors based on the generalized distribution of Gompertz in a defective version, which is conveniently reparametrized in terms of the q-th quantile and then linked to covariates via a logarithm link function. This proposal allows us to obtain how each variable affects the survival times in different quantiles. In addition, we are able to study the effects of covariates on the cure rate as well. We consider Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in the proposed model and we evaluate its performance through a Monte Carlo simulation study. Finally, we illustrate the advantages of our model in a data set about male breast cancer from Brazil.
翻译:在本篇文章中,我们特别讨论了评估临床阶段和年龄对患乳腺癌的男子的特定生存时间的影响问题,如果治疗是可能的,那么,我们特别要评估临床阶段和年龄对患乳腺癌的男子的特定生存时间的影响,如果有兴趣解释这种影响对生存时间的不同孔数的影响,我们为此在长期幸存者在场的情况下,开发了一种生存数据的四分位回归模型,其依据是:以缺陷版本的Gompertz普遍分布,该模型在q-第夸提尔方面方便地进行了重新校正,然后通过对数链接功能与共变体连接。这个提案使我们能够了解每种变量如何影响不同孔数的存活时间。此外,我们还能够研究共变体对治愈率的影响。我们考虑了Markov链条蒙特卡洛(MC)的方法,以在提议的模型中开发一种巴伊西亚分析,我们通过蒙特卡洛模拟研究来评估其表现。最后,我们用巴西男性乳腺癌的一组数据来说明我们的模型的优点。