This paper assesses when the validity of difference-in-differences and related estimators depends on functional form. We provide a novel characterization: the parallel trends assumption holds under all strictly monotonic transformations of the outcome if and only if a stronger "parallel trends"-type condition holds on the entire distribution of untreated potential outcomes. This condition is satisfied if (i) treatment is as-if randomly assigned, (ii) the distribution of potential outcomes is stationary, or (iii) treatment is as-if randomly assigned among a subset of the population and the remainder of the population has stationary potential outcomes. We show further that it is impossible to construct any estimator that is consistent (or unbiased) for the average treatment effect on the treated (ATT) without either imposing functional form restrictions or imposing assumptions that identify the full distribution of untreated potential outcomes. Our results suggest that researchers who wish to point-identify the ATT should justify one of the following: (i) why treatment is as-if randomly assigned, (ii) why the chosen functional form is correct at the exclusion of others, or (iii) a method for inferring the entire counterfactual distribution of untreated potential outcomes.


翻译:本文评估了差异和相关估计结果的有效性何时取决于功能形式。我们提供了一个新的特征:在结果的所有严格单一变化下,平行趋势假设维持在所有严格的单一变化之下,如果而且只有在更强大的“平行趋势”类型的条件维持在未经处理的潜在结果的整个分布上。如果(一) 治疗是随机分配的,(二) 潜在结果的分配是静止的,(二) 潜在结果的分配是随机的,或(三) 治疗是随机分配的,而其余人口则有固定的潜在结果。我们进一步表明,在不施加功能形式限制或强加能够确定未经处理的潜在结果的充分分布的假设的情况下,不可能建立对被处理结果的平均处理效果具有一致(或不带偏见)的任何估计值。我们的结果表明,希望点名的ATT结果的分布是固定的,或(二) 治疗是随机分配的,(二) 选择的功能形式为什么在排除他人时是正确的,或(三) 可能反正整个结果的分布方法。

0
下载
关闭预览

相关内容

专知会员服务
197+阅读 · 2020年10月14日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
40+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年10月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月15日
Arxiv
0+阅读 · 2021年1月14日
Design and Analysis of Switchback Experiments
Arxiv
0+阅读 · 2021年1月14日
VIP会员
相关VIP内容
专知会员服务
197+阅读 · 2020年10月14日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
40+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
4+阅读 · 2019年10月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员