Spatial-temporal data contains rich information and has been widely studied in recent years due to the rapid development of relevant applications in many fields. For instance, medical institutions often use electrodes attached to different parts of a patient to analyse the electorencephal data rich with spatial and temporal features for health assessment and disease diagnosis. Existing research has mainly used deep learning techniques such as convolutional neural network (CNN) or recurrent neural network (RNN) to extract hidden spatial-temporal features. Yet, it is challenging to incorporate both inter-dependencies spatial information and dynamic temporal changes simultaneously. In reality, for a model that leverages these spatial-temporal features to fulfil complex prediction tasks, it often requires a colossal amount of training data in order to obtain satisfactory model performance. Considering the above-mentioned challenges, we propose an adaptive federated relevance framework, namely FedRel, for spatial-temporal graph learning in this paper. After transforming the raw spatial-temporal data into high quality features, the core Dynamic Inter-Intra Graph (DIIG) module in the framework is able to use these features to generate the spatial-temporal graphs capable of capturing the hidden topological and long-term temporal correlation information in these graphs. To improve the model generalization ability and performance while preserving the local data privacy, we also design a relevance-driven federated learning module in our framework to leverage diverse data distributions from different participants with attentive aggregations of their models.


翻译:近些年来,由于许多领域相关应用的迅速发展,空间时空数据包含丰富的信息,并且由于许多领域相关应用的迅速发展,近年来已经进行了广泛研究。例如,医疗机构经常使用附属于病人不同部分的电极来分析富含空间和时间特征的具有健康评估和疾病诊断功能的电动脑功能数据。现有研究主要使用了深层学习技术,如神经神经神经网络(CNN)或经常神经神经网络(RNNN)等,以提取隐藏的空间时空特征。然而,同时纳入空间时空信息与动态时间变化两方面都具有挑战性。在现实中,如果模型利用这些空间时空功能来完成复杂的预测任务,往往需要大量培训数据才能取得令人满意的模型性表现。考虑到上述挑战,我们提出了一个适应式的联动关联框架,即Fed Rel,用于本文中的空间时空图学习。在将原始空间时空时空数据转换为高质量的特征,同时将核心动态时空图(DIIG)模块纳入。对于利用这些空间时空特征来利用这些空间时空特征来完成复杂的预测任务,往往需要大量培训数据,以便利用这些特征,同时利用这些特征在空间-时空数据模型中利用这些特征模型,从而测量模型的智能模型利用这些特征,从而在空间-时空分析模型在空间-智能模型中生成数据模型中生成数据模型中生成数据模型的模型中,从而生成模型能够生成数据模型在空间-感变变的模型,从而生成数据模型,从而生成数据模型在空间-智能模型在空间-智能模型中生成数据模型中生成生成性能性能性模型,从而生成数据模型,从而生成性能性能生成性能性能性能性能性能生成性能生成模型,从而在空间-智能模型,从而在空间-智能模型中生成数据模型,从而测量模型,从而测量性模型中生成模型,从而测量性模型,从而测量性模型,从而测量性模型,从而生成性模型,从而测量性能性能生成性能生成性能模型中,从而在空间-感性模型,从而测量性能性能性能性能模型,从而在空间-感性能性能性能性能模型在空间-感性能性能性能性能性能性能性能性能性能性能性能性能

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月24日
Arxiv
21+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
34+阅读 · 2020年1月2日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关论文
Arxiv
0+阅读 · 2022年7月24日
Arxiv
21+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
34+阅读 · 2020年1月2日
Arxiv
11+阅读 · 2018年9月28日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员