Large-scale graph-structured data arising from social networks, databases, knowledge bases, web graphs, etc. is now available for analysis and mining. Graph-mining often involves 'relationship queries', which seek a ranked list of interesting interconnections among a given set of entities, corresponding to nodes in the graph. While relationship queries have been studied for many years, using various terminologies, e.g., keyword-search, Steiner-tree in a graph etc., the solutions proposed in the literature so far have not focused on scaling relationship queries to large graphs having billions of nodes and edges, such are now publicly available in the form of 'linked-open-data'. In this paper, we present an algorithm for distributed keyword search (DKS) on large graphs, based on the graph-parallel computing paradigm Pregel. We also present an analytical proof that our algorithm produces an optimally ranked list of answers if run to completion. Even if terminated early, our algorithm produces approximate answers along with bounds. We describe an optimized implementation of our DKS algorithm along with time-complexity analysis. Finally, we report and analyze experiments using an implementation of DKS on Giraph the graph-parallel computing framework based on Pregel, and demonstrate that we can efficiently process relationship queries on large-scale subsets of linked-open-data.
翻译:由社交网络、数据库、知识基础、网络图表等生成的大型图表结构数据现在可供分析和开采。 图表挖掘往往涉及“ 关系查询”, 寻找与图表节点相对应的一组实体之间有趣的相互联系的排名列表。 虽然多年来一直在使用各种术语(例如关键词搜索、图中施泰纳树等)研究关系查询,但迄今为止文献中提议的解决方案并不侧重于缩小对拥有数十亿节点和边缘的大图表的查询关系,这些查询现在以“链接开放数据”的形式公开提供。 在本文中,我们根据图表-单词计算模型Pregel,为大图中分布的关键词搜索(DKS)提供了一种算法。 我们还提供了分析证明,我们的算法如果运行到完成,则能产生最优的排名答案列表。 即使提前结束, 我们的算法也产生大概的答案和界限。 我们描述了我们DKS算法的优化实施过程,同时以时间兼容性开放数据分析形式公开提供。 最后,我们根据图形- 相连接的GIRS 模型, 分析我们能够用基于大规模图表的Giral- 数据分析我们基于Giral- dalal- 的大规模图表的进度分析。