The familiar second derivative test for convexity, combined with resolvent calculus, is shown to yield a useful tool for the study of convex matrix-valued functions. We demonstrate the applicability of this approach on a number of theorems in this field. These include convexity principles which play an essential role in the Lieb-Ruskai proof of the strong subadditivity of quantum entropy.
翻译:已知的关于细度的第二次衍生物试验,加上固态微积分,已证明是研究细化矩阵价值值函数的有用工具。我们证明这一方法适用于这一领域的一些理论,其中包括在Lieb-Ruskai证明量子倍增性的证据中起重要作用的细化原则。