Alzheimer's disease (AD) is a progressive brain disorder that causes memory and functional impairments. The advances in machine learning and publicly available medical datasets initiated multiple studies in AD diagnosis. In this work, we utilize a multi-modal deep learning approach in classifying normal cognition, mild cognitive impairment and AD classes on the basis of structural MRI and diffusion tensor imaging (DTI) scans from the OASIS-3 dataset. In addition to a conventional multi-modal network, we also present an input agnostic architecture that allows diagnosis with either sMRI or DTI scan, which distinguishes our method from previous multi-modal machine learning-based methods. The results show that the input agnostic model achieves 0.96 accuracy when both structural MRI and DTI scans are provided as inputs.
翻译:阿尔茨海默氏病(AD)是一种渐进式脑疾病,引起记忆和功能障碍。机器学习和公开提供的医学数据集的进步在AD诊断中启动了多项研究。在这项工作中,我们利用一种多模式的深层次学习方法,在结构性磁共振、轻度认知障碍和AD类的基础上,对正常认知、轻度认知障碍和AD分类进行结构性磁共振和磁共振成像(DTI)扫描。除了传统的多模式网络外,我们还展示了一种输入的不可知性结构,通过 SMRI 或 DTI 扫描进行诊断,将我们的方法与以往的多模式机器学习方法区分开来。结果显示,在提供结构性磁共振和DTI 扫描作为投入时,输入的不可知性模型达到了0.96的准确度。