Due to the COVID-19 pandemic, governments had to rapidly implement lockdown policies that restricted human mobility to suppress the spread of the disease and reduce mortality. Because of the movement restrictions resulting from government responses to the pandemic, US retail sales declined by -22% in April 2020 compared to the previous year. This study looks at the stringency of government policies, mobility patterns, and implied compliance levels. The relationships between these variables and the influence on retail sales serve to understand past human behavior and prepare for future pandemics. Retail losses varied dramatically across the US states, from -1.6% in Mississippi to -38.9% in Hawaii. States in the west and northeast were most affected, while those in the south were relatively resilient. Regression was used to identify statistically significant state-level characteristics. The greatest losses occurred in states with a high percentage of Democrat voters in the 2020 Presidential Election and those with large populations. A 10% increase in the Democrat vote is associated with a 2.4% increase in retail sales loss. States with a high percentage of adults with less than a high school diploma were most resilient. The number of trips of less than one-mile per capita is defined as the mobility index as it has the greatest influence on retail sales, on average, across the US states. An increase of 10% in this mobility index is associated with a 4.6% increase in retail sales. All states were generally compliant and exhibited reduced mobility with increasing stringency. A rise of 1% in the stringency index is associated with a decline of 1% in the mobility index. States with a high percentage of Democrat voters, large populations, and located in the west tend to be most compliant. A 10% rise in the proportion of people voting Democrat is associated with a 5% increase in compliance.


翻译:由于COVID-19大流行,政府不得不迅速实施限制人员流动以遏制疾病传播和降低死亡率的锁定政策,限制人员流动以遏制疾病传播并降低死亡率。由于政府对这一流行病的反应导致的行动限制,美国2020年4月零售销售量比上一年下降了-22%。这项研究审视了政府政策的严厉性、流动性模式和隐含的合规水平。这些变量与零售业对零售业的影响之间的关系有助于理解过去人类行为和为未来流行病做准备。美国各州的零售损失差异很大,从密西西比的-1.6%到夏威夷的-38.9 %。西部和东北部国家受到的影响最大,而南部国家则相对而言,由于政府对这一流行病的应对措施的影响相对较大,2020年4月美国零售业销售量下降至22%。在2020年总统选举中民主党选民比例较高的州和人口众多的州损失最大。民主党选票增加10%与零售业损失增加2.4%有关。 具有较高注册率的成年人比例很高的国家最有弹性。 与高注册率的国家相比, 低于1英里的人均旅行次数,而其零售业增长率为1英里以上。

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
专知会员服务
39+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
0+阅读 · 2022年10月18日
Arxiv
12+阅读 · 2021年8月19日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
专知会员服务
39+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员