Sepsis is a life-threatening condition with organ dysfunction and is a leading cause of death and critical illness worldwide. Accurate detection of sepsis during emergency department triage would allow early initiation of lab analysis, antibiotic administration, and other sepsis treatment protocols. The purpose of this study was to determine whether EHR data can be extracted and synthesized with the latest machine learning algorithms (KATE Sepsis) and clinical natural language processing to produce accurate sepsis models, and compare KATE Sepsis performance with existing sepsis screening protocols, such as SIRS and qSOFA. A machine learning model (KATE Sepsis) was developed using patient encounters with triage data from 16 participating hospitals. KATE Sepsis, SIRS, standard screening (SIRS with source of infection) and qSOFA were tested in three settings. Cohort-A was a retrospective analysis on medical records from a single Site 1. Cohort-B was a prospective analysis of Site 1. Cohort-C was a retrospective analysis on Site 1 with 15 additional sites. Across all cohorts, KATE Sepsis demonstrates an AUC of 0.94-0.963 with 73-74.87% TPR and 3.76-7.17% FPR. Standard screening demonstrates an AUC of 0.682-0.726 with 39.39-51.19% TPR and 2.9-6.02% FPR. The qSOFA protocol demonstrates an AUC of 0.544-0.56, with 10.52-13.18% TPR and 1.22-1.68% FPR. For severe sepsis, across all cohorts, KATE Sepsis demonstrates an AUC of 0.935-0.972 with 70-82.26% TPR and 4.64-8.62% FPR. For septic shock, across all cohorts, KATE Sepsis demonstrates an AUC of 0.96-0.981 with 85.71-89.66% TPR and 4.85-8.8% FPR. SIRS, standard screening, and qSOFA demonstrate low AUC and TPR for severe sepsis and septic shock detection. KATE Sepsis provided substantially better sepsis detection performance in triage than commonly used screening protocols.


翻译:Sepsis是一种危及生命的器官机能失调症,是全世界范围内死亡和严重疾病的一个主要原因。在紧急部门分治期间准确检测出败血症,可以早期启动实验室分析、抗生素管理和其他败血症治疗规程。这项研究的目的是确定EHR数据是否可以与最新的机器学习算法(KATE 缩压)和临床自然语言处理进行提取和合成,以产生准确的败血模型,并将KATE 缩血病检测程序(SIRS和qSOFA)与现有的败血筛查程序(如SIRS和SIOFA.)进行比较。一个机器学习模型(KATE Sepsis)使用16个参加医院的三分治病数据进行研制。KATE Sepsis、SISRS(具有感染源的SIRS)和QSOFS.A对医疗记录进行了回顾性分析,对1号站点进行了前景分析,对1号站点进行了回顾分析,对1号站点进行了15个站点进行了分析。 KAT EPRside 和3-7-SOMSO 演示显示AU 和0.9-PRSU 0.9。

0
下载
关闭预览

相关内容

Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年6月9日
Arxiv
12+阅读 · 2022年1月26日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员