In this paper we introduce JuliaSim, a high-performance programming environment designed to blend traditional modeling and simulation with machine learning. JuliaSim can build accelerated surrogates from component-based models, such as those conforming to the FMI standard, using continuous-time echo state networks (CTESN). The foundation of this environment, ModelingToolkit.jl, is an acausal modeling language which can compose the trained surrogates as components within its staged compilation process. As a complementary factor we present the JuliaSim model library, a standard library with differential-algebraic equations and pre-trained surrogates, which can be composed using the modeling system for design, optimization, and control. We demonstrate the effectiveness of the surrogate-accelerated modeling and simulation approach on HVAC dynamics by showing that the CTESN surrogates accurately capture the dynamics of a HVAC cycle at less than 4\% error while accelerating its simulation by 340x. We illustrate the use of surrogate acceleration in the design process via global optimization of simulation parameters using the embedded surrogate, yielding a speedup of two orders of magnitude to find the optimum. We showcase the surrogate deployed in a co-simulation loop, as a drop-in replacement for one of the coupled FMUs, allowing engineers to effectively explore the design space of a coupled system. Together this demonstrates a workflow for automating the integration of machine learning techniques into traditional modeling and simulation processes.
翻译:在本文中,我们介绍朱丽亚-西蒙,这是一个高性能的编程环境,旨在将传统的模型和模拟与机器学习相结合。朱丽亚-西蒙可以使用连续时间回声状态网络(CTESN),从基于组件的模型(如符合FMI标准的模型)中,从符合FMI标准的模型(如,使用连续时间回声状态网络(CTESN)建立加速代孕。这种环境的基础“模拟Toolkit.jl”是一种由外演模型语言构成的外演模型,可以将经过训练的代孕器作为分阶段汇编过程的组成部分。作为补充因素,我们介绍了朱丽亚-西蒙模型库,这是一个带有差异性等同方方方程式的标准图书馆,可以使用用于设计、优化和控制的模型(如符合FMI标准的模型),来建立加速代孕模型和模拟方法。我们展示了代孕模型的功效,即模拟模型在4 ⁇ 误误误误误差中准确捕HVAC周期周期的动态,同时加速模拟340x。我们演示了在设计过程中采用代孕加速加速加速程序,通过全球模拟模拟模型的模拟参数,利用嵌化模型的模拟参数的模拟参数,将嵌置化模型的模拟过程的模拟过程进行模拟,从而展示一个模拟升级的升级,从而展示一个机极速递化的系统,从而展示了双级的机极速率的系统。