It is argued that a fuzzy version of 4-truth-valued paraconsistent logic (with truth values corresponding to True, False, Both and Neither) can be approximately isomorphically mapped into the complex-number algebra of quantum probabilities. I.e., p-bits (paraconsistent bits) can be transformed into close approximations of qubits. The approximation error can be made arbitrarily small, at least in a formal sense, and can be related to the degree of irreducible "evidential error" assumed to plague an observer's observations. This logical correspondence manifests itself in program space via an approximate mapping between probabilistic and quantum types in programming languages.
翻译:有观点认为,一个模糊的版本的4-真实价值的准一致逻辑(与真实、虚假、两个和两个都不相符合的真理值)可以大致地以非形态方式绘制成量子概率的复杂数字代数。 也就是说,p-bit(偏差位数)可以转换成qubits近似值。 近似误差可以任意地变得很小,至少从形式上来说是如此,并且可以与无法复制的“明显错误”的程度相关联,这种逻辑通信通过在编程语言中的概率类型和数量类型之间的大致绘图在程序空间中表现出来。