We extend the (continuous) multivariate Almkvist-Zeilberger algorithm in order to apply it for instance to special Feynman integrals emerging in renormalizable Quantum field Theories. We will consider multidimensional integrals over hyperexponential integrands and try to find closed form representations in terms of nested sums and products or iterated integrals. In addition, if we fail to compute a closed form solution in full generality, we may succeed in computing the first coefficients of the Laurent series expansions of such integrals in terms of indefinite nested sums and products or iterated integrals. In this article we present the corresponding methods and algorithms. Our Mathematica package MultiIntegrate, can be considered as an enhanced implementation of the (continuous) multivariate Almkvist Zeilberger algorithm to compute recurrences or differential equations for hyperexponential integrands and integrals. Together with the summation package Sigma and the package HarmonicSums our package provides methods to compute closed form representations (or coefficients of the Laurent series expansions) of multidimensional integrals over hyperexponential integrands in terms of nested sums or iterated integrals.
翻译:我们扩展( 持续) Almkvist- Zeilberger 的多变量算法, 以便将其应用到在可重新调整的量子字段理论中出现的特殊的 Feynman 集成体。 我们将考虑超Excientive Integrans 的多维集成体, 并尝试找到封闭形式表示器, 包括嵌套数和产品或迭代集成体。 此外, 如果我们不能完全笼统地计算封闭形式解决方案, 我们就可以成功地计算Laurent系列扩展的首次系数, 包括无限期嵌套数和产品或迭代集集集体。 在此文章中, 我们展示了相应的方法和算法。 我们的数学包多 InterIngrate, 可以被视为强化( 连续的) 多变量 Almkvist Almkvist Zeilberger 算法的实施, 以计算超正度损耗成的元子和元集体的复本或差异方方程式。 我们的合成包Sigmamal 和组合的合成SconcialSums 提供了在高层扩展组合中配置的复合表( ) 或高额缩缩缩缩缩缩缩成形。