In preclinical investigations, e.g. in in vitro, in vivo and in silico studies, the pharmacokinetic, pharmacodynamic and toxicological characteristics of a drug are evaluated before advancing to first-in-man trial. Usually, each study is analyzed independently and the human dose range does not leverage the knowledge gained from all studies. Taking into account the preclinical data through inferential procedures can be particularly interesting to obtain a more precise and reliable starting dose and dose range. We propose a Bayesian framework for multi-source data integration from preclinical studies results extrapolated to human, which allow to predict the quantities of interest (e.g. the minimum effective dose, the maximum tolerated dose, etc.) in humans. We build an approach, divided in four main steps, based on a sequential parameter estimation for each study, extrapolation to human, commensurability checking between posterior distributions and final information merging to increase the precision of estimation. The new framework is evaluated via an extensive simulation study, based on a real-life example in oncology inspired from the preclinical development of galunisertib. Our approach allows to better use all the information compared to a standard framework, reducing uncertainty in the predictions and potentially leading to a more efficient dose selection.


翻译:在临床前的调查中,例如在体外、体外和硅基研究中,药物的药用动力学、药用动力学和毒理学特征先于药物的药用动力学、药用动力学和毒理学特性进行评估,然后才进行先入为主的试验。通常,每项研究都是独立分析的,人类剂量范围没有利用从所有研究中获得的知识。考虑到通过推断程序得出的临床前数据,特别有意思的是获得更准确和可靠的起始剂量和剂量范围。我们提议一个巴耶斯框架,用于从临床前研究的结果外推至人类的多源数据整合,从而能够预测人类的兴趣数量(例如最低有效剂量、最大耐用剂量等)。我们根据每项研究的顺序参数估计、对人类的外推法、事后分配与最后信息合并之间的可感应变性检查以及提高估计的精确性。我们通过广泛的模拟研究对新框架进行了评价,其基础是实际生命学实例,从而可以预测人类的兴趣数量(例如最低有效剂量、最大耐受剂量等)。我们根据每项研究的顺序,将分成四个主要步骤,根据对各项研究的顺序估计,从人类的推算出更好的预测方法,从而将所有实验室前进行更精确选择。

0
下载
关闭预览

相关内容

2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员