Double Q-learning is a popular reinforcement learning algorithm in Markov decision process (MDP) problems. Clipped Double Q-learning, as an effective variant of Double Q-learning, employs the clipped double estimator to approximate the maximum expected action value. Due to the underestimation bias of the clipped double estimator, performance of clipped Double Q-learning may be degraded in some stochastic environments. In this paper, in order to reduce the underestimation bias, we propose an action candidate based clipped double estimator for Double Q-learning. Specifically, we first select a set of elite action candidates with the high action values from one set of estimators. Then, among these candidates, we choose the highest valued action from the other set of estimators. Finally, we use the maximum value in the second set of estimators to clip the action value of the chosen action in the first set of estimators and the clipped value is used for approximating the maximum expected action value. Theoretically, the underestimation bias in our clipped Double Q-learning decays monotonically as the number of the action candidates decreases. Moreover, the number of action candidates controls the trade-off between the overestimation and underestimation biases. In addition, we also extend our clipped Double Q-learning to continuous action tasks via approximating the elite continuous action candidates. We empirically verify that our algorithm can more accurately estimate the maximum expected action value on some toy environments and yield good performance on several benchmark problems.


翻译:双Q 学习是Markov 决策程序( MDP) 问题的流行强化学习算法。 以双Q 学习为有效变式的双Q 学习, 使用剪切的双重估计器以接近最大预期行动值。 由于剪切的双重估计器偏差过低, 剪切的双Q 学习的性能在某些随机环境下可能会降低。 在本文中, 为了减少低估偏差, 我们提议一个基于行动的候选人剪贴的双估计器, 用于双Q 学习。 具体地说, 我们首先从一组估算器中选择一组具有高行动值的精英行动候选人。 然后, 在这些候选人中, 我们从另一组估算器中选择最高价值的行动。 最后, 我们使用第二组估算器的最大价值来剪贴下所选择的行动值。 为了适应最大预期的行动值, 我们使用一个剪贴的双偏移的双估计器, 具体来说, 一组估算的精度的精度选择对象的精度对高操作值的偏差 。 Q 理论上, 在一组估算的精度上, 我们的精度的精度对最深的精度的算法, 将一些候选人的精确的精确的精确的校定操作动作动作,, 我们的精确的精确的校定的校定的动作动作动作动作动作的精确的精确的校正,, 排序的校正的校正的校正,, 我们的校正的校正的动作的校正的校正的校正对候选人的校正的动作的动作的动作,,, 的校正的校正的校正的动作,,, 我们的校正的校对的校对的校对的校对的校对的校对的动作,, 。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2020年12月4日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月19日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2020年12月4日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员