In this work we introduce a novel semi-implicit structure-preserving finite-volume/finite-difference scheme for the viscous and resistive equations of magnetohydrodynamics (MHD) based on an appropriate 3-split of the governing PDE system, which is decomposed into a first convective subsystem, a second subsystem involving the coupling of the velocity field with the magnetic field and a third subsystem involving the pressure-velocity coupling. The nonlinear convective terms are discretized explicitly, while the remaining two subsystems accounting for the Alfven waves and the magneto-acoustic waves are treated implicitly. The final algorithm is at least formally constrained only by a mild CFL stability condition depending on the velocity field of the pure hydrodynamic convection. To preserve the divergence-free constraint of the magnetic field exactly at the discrete level, a proper set of overlapping dual meshes is employed. The resulting linear algebraic systems are shown to be symmetric and therefore can be solved by means of an efficient standard matrix-free conjugate gradient algorithm. One of the peculiarities of the presented algorithm is that the magnetic field is defined on the edges of the main grid, while the electric field is on the faces. The final scheme can be regarded as a novel shock-capturing, conservative and structure preserving semi-implicit scheme for the nonlinear viscous and resistive MHD equations. Several numerical tests are presented to show the main features of our novel solver: linear-stability in the sense of Lyapunov is verified at a prescribed constant equilibrium solution; a 2nd-order of convergence is numerically estimated; shock-capturing capabilities are proven against a standard set of stringent MHD shock-problems; accuracy and robustness are verified against a nontrivial set of 2- and 3-dimensional MHD problems.


翻译:在这项工作中,我们为磁流动力学(MHD)的粘和耐力方程引入了一个新的半隐性结构保存定量/峰值/峰值差异方案,其基础是治理的 PDE 系统的适当三分方程式,这个系统将分解为第一个对流子系统,第二个子系统涉及速度场与磁场的连接,第三个子系统涉及压力-速度的连接。非线性对流术语被明确分解,而其余两个子系统核算Alfven波和磁力-声波的螺旋和耐性方程特性得到暗中处理。最终算法至少只是受到微小的 CFL 稳定性条件的制约,这取决于纯流体动力对流的对流的对流。要将磁场的无差异性约束完全保留在离心水平上,因此产生的线性对正数的对立系统显示为对流性,因此可以通过一个高效的不锈度标准基调调的直径等值的直线性梯度和直径波波波波波波波波波波进行暗处理。最后的磁力测算法中,一个主电压的磁场的对磁变电图显示的对磁场的对磁场的对磁场的直径平的变电图。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年11月3日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年4月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
深度撕裂的台湾:Semantics-Preserving Hash
我爱读PAMI
4+阅读 · 2017年3月29日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年4月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
深度撕裂的台湾:Semantics-Preserving Hash
我爱读PAMI
4+阅读 · 2017年3月29日
Top
微信扫码咨询专知VIP会员