Transmissive reconfigurable intelligent surfaces (RIS) represent a transformative architecture for future wireless networks, enabling a paradigm shift from traditional costly base stations to low-cost, energy-efficient transmitters. This paper explores a downlink multi-user MIMO system where a transmissive RIS, illuminated by a single feed antenna, forms the core of the transmitter. The joint optimization of the RIS coefficient vector, power allocation, and receive beamforming in such a system is critical for performance but poses significant challenges due to the non-convex objective, coupled variables, and constant modulus constraints. To address these challenges, we propose a novel optimization framework. Our approach involves reformulating the sum-rate maximization problem into a tractable equivalent form and developing an efficient alternating optimization (AO) algorithm. This algorithm decomposes the problem into subproblems for the RIS coefficients, receive beamformers, and power allocation, each solved using advanced techniques including convex approximation and difference-of-convex programming. Simulation results demonstrate that our proposed method converges rapidly and achieves substantial sum-rate gains over conventional schemes, validating the effectiveness of our approach and highlighting the potential of transmissive RIS as a key technology for next-generation wireless systems.


翻译:透射式可重构智能表面(RIS)代表了未来无线网络的变革性架构,实现了从传统高成本基站向低成本、高能效发射器的范式转变。本文研究了一种下行多用户MIMO系统,其中由单个馈电天线照射的透射式RIS构成发射器的核心。在该系统中,RIS系数向量、功率分配和接收波束成形的联合优化对性能至关重要,但由于目标函数的非凸性、变量间的耦合以及恒定模约束,带来了显著挑战。为应对这些挑战,我们提出了一种新颖的优化框架。我们的方法包括将和速率最大化问题重构为易于处理的等价形式,并开发了一种高效的交替优化(AO)算法。该算法将问题分解为RIS系数、接收波束成形器和功率分配的子问题,每个子问题均采用凸近似和凸差规划等先进技术求解。仿真结果表明,所提方法收敛迅速,相较于传统方案实现了显著的和速率增益,验证了该方法的有效性,并凸显了透射式RIS作为下一代无线系统关键技术的潜力。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2021年7月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员