The assessment of knee osteoarthritis (KOA) severity on knee X-rays is a central criteria for the use of total knee arthroplasty. However, this assessment suffers from imprecise standards and a remarkably high inter-reader variability. An algorithmic, automated assessment of KOA severity could improve overall outcomes of knee replacement procedures by increasing the appropriateness of its use. We propose a novel deep learning-based five-step algorithm to automatically grade KOA from posterior-anterior (PA) views of radiographs: (1) image preprocessing (2) localization of knees joints in the image using the YOLO v3-Tiny model, (3) initial assessment of the severity of osteoarthritis using a convolutional neural network-based classifier, (4) segmentation of the joints and calculation of the joint space narrowing (JSN), and (5), a combination of the JSN and the initial assessment to determine a final Kellgren-Lawrence (KL) score. Furthermore, by displaying the segmentation masks used to make the assessment, our algorithm demonstrates a higher degree of transparency compared to typical "black box" deep learning classifiers. We perform a comprehensive evaluation using two public datasets and one dataset from our institution, and show that our algorithm reaches state-of-the art performance. Moreover, we also collected ratings from multiple radiologists at our institution and showed that our algorithm performs at the radiologist level. The software has been made publicly available at https://github.com/MaciejMazurowski/osteoarthritis-classification.
翻译:对膝关节炎(KOA)在膝盖上的严重程度进行评估是使用膝盖节肢炎(KOA)的一个中心标准。然而,这一评估存在不精确的标准和阅读者之间差异性极高的问题。对膝盖骨髓炎(KOA)严重程度进行自动的算法评估可以提高膝盖替换程序使用的适当性,从而改善膝盖骨髓炎(KOA)的总体结果。我们建议采用一种新的深层次的基于学习的五步算法,从对射电图的后视镜(PA)中自动得出KOA的五步分数:(1) 图像预处理(2) 使用YOLO v3-Tiny模型将图像中的膝盖关节本地化;(3) 初步评估骨髓炎的严重程度,使用以神经神经网络为基础的分类,(4) 联合空间缩小(JSN)的联合分解和计算,(5) 将JSN(JSN)和确定最后Kellgren-Anter(KL)分数的初始评估组合。此外,通过展示用于评估的分解面面面口罩,我们的算法显示与典型的公开等级相比的透明度程度,我们通过常规的压(MLassalalalalation)机构进行了我们的一个数据分析。我们从一个分级/Calevalevalal)的系统进行。我们的一个分解。我们从一个分级的分解。