In this paper, we propose a method for density-based clustering in high-dimensional spaces that combines Locality-Sensitive Hashing (LSH) with the Quick Shift algorithm. The Quick Shift algorithm, known for its hierarchical clustering capabilities, is extended by integrating approximate Kernel Density Estimation (KDE) using LSH to provide efficient density estimates. The proposed approach achieves almost linear time complexity while preserving the consistency of density-based clustering.
翻译:暂无翻译