The recent interweaving of AI-6G technologies has sparked extensive research interest in further enhancing reliable and timely communications. \emph{Age of Information} (AoI), as a novel and integrated metric implying the intricate trade-offs among reliability, latency, and update frequency, has been well-researched since its conception. This paper contributes new results in this area by employing a Deep Reinforcement Learning (DRL) approach to intelligently decide how to allocate power resources and when to retransmit in a \emph{freshness-sensitive} downlink multi-user Hybrid Automatic Repeat reQuest with Chase Combining (HARQ-CC) aided Non-Orthogonal Multiple Access (NOMA) network. Specifically, an AoI minimization problem is formulated as a Markov Decision Process (MDP) problem. Then, to achieve deterministic, age-optimal, and intelligent power allocations and retransmission decisions, the Double-Dueling-Deep Q Network (DQN) is adopted. Furthermore, a more flexible retransmission scheme, referred to as Retransmit-At-Will scheme, is proposed to further facilitate the timeliness of the HARQ-aided NOMA network. Simulation results verify the superiority of the proposed intelligent scheme and demonstrate the threshold structure of the retransmission policy. Also, answers to whether user pairing is necessary are discussed by extensive simulation results.


翻译:近年来,人工智能(AI)和第六代移动通信(6G)技术的融合引发了学术界对进一步提高可靠和及时通信的广泛研究兴趣。信息时代(AoI)是一项新颖的综合指标,涵盖了可靠性、延迟和更新频率之间复杂的权衡,自从提出以来,已经得到了广泛的研究。本文通过采用深度强化学习(DRL)方法,智能化地决定如何分配功率资源和何时在[HARQ-CC] NOMA多用户下行信道中进行重传,从而在此领域做出了新的贡献。具体而言,将时延最小化问题形式化为马尔可夫决策过程(MDP)问题。然后,采用双重深度决斗[Q]网络(Dueling-Deep Q Network,简称DQN)来实现确定性、时延最优、智能化的功率分配和重传决策。此外,还提出了一种更灵活的重传方案,称为Retransmit-At-Will方案,以进一步促进[HARQ-CC] NOMA网络的及时性。仿真结果验证了所提出的智能化方案的优越性,并展示了重传策略的门限结构。此外,通过广泛的仿真结果,讨论了是否需要用户配对的问题。

0
下载
关闭预览

相关内容

基于通信的多智能体强化学习进展综述
专知会员服务
110+阅读 · 2022年11月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
21+阅读 · 2022年11月8日
Arxiv
15+阅读 · 2022年6月14日
Arxiv
16+阅读 · 2021年1月27日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员