Crowd-sourcing has become a promising way to build} a feature-based indoor positioning system that has lower labour and time costs. It can make full use of the widely deployed infrastructure as well as built-in sensors on mobile devices. One of the key challenges is to generate the reference feature map (RFM), a database used for localization, by {aligning crowd-sourced {trajectories according to associations embodied in the data. In order to facilitate the data fusion using crowd-sourced inertial sensors and radio signals, this paper proposes an approach to adaptively mining geometric information. This is the essential for generating spatial associations between trajectories when employing graph-based optimization methods. The core idea is to estimate the functional relationship to map the similarity/dissimilarity between radio signals to the physical space based on the relative positions obtained from inertial sensors and their associated radio signals. Namely, it is adaptable to different modalities of data and can be implemented in a self-supervised way. We verify the generality of the proposed approach through comprehensive experimental analysis: i) qualitatively comparing the estimation of geometric mapping models and the alignment of crowd-sourced trajectories; ii) quantitatively evaluating the positioning performance. The 68\% of the positioning error is less than 4.7 $\mathrm{m}$ using crowd-sourced RFM, which is on a par with manually collected RFM, in a multi-storey shopping mall, which covers more than 10, 000 $ \mathrm{m}^2 $.
翻译:彩虹- 彩虹- 彩虹- 彩虹- 彩虹- 彩虹- 彩虹- 建立基于地貌特征的室内定位系统, 劳动成本和时间成本较低。 它可以充分利用广泛部署的基础设施以及移动设备上的内置传感器。 其中一项关键挑战是如何根据数据所含的关联, 生成用于本地化的参考地貌地图( RFM ), 数据库, 即用于本地化的参考地貌特征地图( RFM ) 。 也就是说, 为了便利数据融合, 使用众源惯性惯性传感器和无线电信号, 本文提出了一种适应性地挖掘地理测量信息的方法。 这是在使用基于图形的优化方法时在轨迹间生成空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间 。 也就是说, 它可以适应不同的数据模式, 并且可以以自我监控的方式实施。 我们通过全面的实验分析来核实拟议方法的通用性: (i) 以质量比较地基对地基- 平基- 平基- 平面2 模型模型模型模型模型模型模型的模型模型模型模型模型模型模型模型模型模型的模型的模型的模型,, 和比例的定位的定位的定位比 。