Pedestrian trajectory prediction in urban scenarios is essential for automated driving. This task is challenging because the behavior of pedestrians is influenced by both their own history paths and the interactions with others. Previous research modeled these interactions with pooling mechanisms or aggregating with hand-crafted attention weights. In this paper, we present the Social Interaction-Weighted Spatio-Temporal Convolutional Neural Network (Social-IWSTCNN), which includes both the spatial and the temporal features. We propose a novel design, namely the Social Interaction Extractor, to learn the spatial and social interaction features of pedestrians. Most previous works used ETH and UCY datasets which include five scenes but do not cover urban traffic scenarios extensively for training and evaluation. In this paper, we use the recently released large-scale Waymo Open Dataset in urban traffic scenarios, which includes 374 urban training scenes and 76 urban testing scenes to analyze the performance of our proposed algorithm in comparison to the state-of-the-art (SOTA) models. The results show that our algorithm outperforms SOTA algorithms such as Social-LSTM, Social-GAN, and Social-STGCNN on both Average Displacement Error (ADE) and Final Displacement Error (FDE). Furthermore, our Social-IWSTCNN is 54.8 times faster in data pre-processing speed, and 4.7 times faster in total test speed than the current best SOTA algorithm Social-STGCNN.


翻译:城市情景中的Pedestrial轨迹预测对于自动驾驶至关重要。 这项任务具有挑战性, 因为行人的行为既受自身历史路径的影响,也受与其他人的互动影响。 先前的研究以这些互动模式为模型,使用集合机制或手工制作的注意力重量来模拟这些互动。 在本文件中,我们介绍了社会互动-智能Spatio-Tempio-Tempal Convolution Convolual Neal网络(社会-IWSTCNN),其中包括空间和时间特点。 我们提议了一个新颖的设计,即社会互动提取器,以学习行人的空间和社会互动特征。 大部分以前的工作使用了包括五个场景的ETH和UCY数据集,但不涵盖广泛的城市交通情况,用于培训和评估。 在本文件中,我们使用最近发布的城市交通情景中的大规模Waymo Open数据集,其中包括374个城市培训场景和76个城市测试场景,用以分析我们提议的算法与最新(SOTA)模式相比的绩效。 我们的算法高于SATA算法,例如社会- LESTMTM、社会- GS-GAN-TER 和SIS- AS- Rest- Risax 时间中, 和SIS- Rislate- Rislate- sal- 和S- dislate- sal- sal- syx- slate- sal- sal- syxxxxxxxxxxxxxxxxxxxxxx 。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Fully-Convolutional Siamese Networks for Object Tracking论文笔记
统计学习与视觉计算组
9+阅读 · 2018年10月12日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【泡泡一分钟】动态环境下稳健的单目SLAM
泡泡机器人SLAM
13+阅读 · 2018年3月22日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
从PM到GAN——LSTM之父Schmidhuber横跨22年的怨念
AI研习社
6+阅读 · 2017年11月11日
Arxiv
6+阅读 · 2018年2月8日
VIP会员
相关VIP内容
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Fully-Convolutional Siamese Networks for Object Tracking论文笔记
统计学习与视觉计算组
9+阅读 · 2018年10月12日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【泡泡一分钟】动态环境下稳健的单目SLAM
泡泡机器人SLAM
13+阅读 · 2018年3月22日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
从PM到GAN——LSTM之父Schmidhuber横跨22年的怨念
AI研习社
6+阅读 · 2017年11月11日
Top
微信扫码咨询专知VIP会员