Data processing and analytics are fundamental and pervasive. Algorithms play a vital role in data processing and analytics where many algorithm designs have incorporated heuristics and general rules from human knowledge and experience to improve their effectiveness. Recently, reinforcement learning, deep reinforcement learning (DRL) in particular, is increasingly explored and exploited in many areas because it can learn better strategies in complicated environments it is interacting with than statically designed algorithms. Motivated by this trend, we provide a comprehensive review of recent works focusing on utilizing deep reinforcement learning to improve data processing and analytics. First, we present an introduction to key concepts, theories, and methods in deep reinforcement learning. Next, we discuss deep reinforcement learning deployment on database systems, facilitating data processing and analytics in various aspects, including data organization, scheduling, tuning, and indexing. Then, we survey the application of deep reinforcement learning in data processing and analytics, ranging from data preparation, natural language interface to healthcare, fintech, etc. Finally, we discuss important open challenges and future research directions of using deep reinforcement learning in data processing and analytics.
翻译:数据处理和分析是基本和普遍的。在数据处理和分析中,许多算法设计包括了人类知识和经验的超常和一般规则,以提高其效力。最近,在许多领域,特别是强化学习、深强化学习(DRL)日益得到探索和利用,因为它可以在复杂的环境中学习更好的战略,而它与静态设计的算法相互作用。受这一趋势的驱动,我们对最近的工作进行了全面审查,重点是利用深度强化学习来改进数据处理和分析。首先,我们介绍了深强化学习的关键概念、理论和方法。接下来,我们讨论了在数据库系统中进行深度强化学习的部署,促进数据处理和各方面的分析,包括数据组织、时间安排、调整和索引编制。然后,我们调查在数据处理和分析中应用深度强化学习的情况,从数据编制、自然语言界面到保健、芬奇等等。最后,我们讨论了在数据处理和分析中使用深度强化学习方面的重要公开挑战和未来研究方向。