Quantitative evaluation has increased dramatically among recent video inpainting work, but the video and mask content used to gauge performance has received relatively little attention. Although attributes such as camera and background scene motion inherently change the difficulty of the task and affect methods differently, existing evaluation schemes fail to control for them, thereby providing minimal insight into inpainting failure modes. To address this gap, we propose the Diagnostic Evaluation of Video Inpainting on Landscapes (DEVIL) benchmark, which consists of two contributions: (i) a novel dataset of videos and masks labeled according to several key inpainting failure modes, and (ii) an evaluation scheme that samples slices of the dataset characterized by a fixed content attribute, and scores performance on each slice according to reconstruction, realism, and temporal consistency quality. By revealing systematic changes in performance induced by particular characteristics of the input content, our challenging benchmark enables more insightful analysis into video inpainting methods and serves as an invaluable diagnostic tool for the field. Our code is available at https://github.com/MichiganCOG/devil .


翻译:在近期的视频绘画工作中,定量评价显著增加,但用于衡量业绩的视频和遮罩内容相对较少受到注意,虽然相机和背景场景运动等属性必然改变任务难度,对方法产生不同的影响,但现有的评价计划无法控制它们,从而对绘制失败模式提供了极少的洞察力。为弥补这一差距,我们提议对关于景观图画的视频绘画(DEVIL)基准进行诊断性评价,该基准由两项贡献组成:(一) 一组新颖的视频和面罩数据集,按照几个关键绘制失败模式标注,以及(二) 评价计划,根据重建、现实主义和时间一致性质量,对每个切片上以固定内容属性为特征的数据集进行切片,并评分业绩。通过揭示投入内容的具体特点导致的系统性能变化,我们具有挑战性的基准能够对视频绘画方法进行更有洞察力的分析,并成为实地的宝贵诊断工具。我们的代码可在https://github.com/MichigganCOG/devile上查阅。

0
下载
关闭预览

相关内容

图像修复(英语:Inpainting)指重建的图像和视频中丢失或损坏的部分的过程。例如在博物馆中,这项工作常由经验丰富的博物馆管理员或者艺术品修复师来进行。数码世界中,图像修复又称图像插值或视频插值,指利用复杂的算法来替换已丢失、损坏的图像数据,主要替换一些小区域和瑕疵。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
微软发布Visual Studio Tools for AI
AI前线
4+阅读 · 2017年11月20日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
20+阅读 · 2020年6月8日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
7+阅读 · 2017年12月28日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
相关资讯
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
微软发布Visual Studio Tools for AI
AI前线
4+阅读 · 2017年11月20日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员