Network traffic data is a combination of different data bytes packets under different network protocols. These traffic packets have complex time-varying non-linear relationships. Existing state-of-the-art methods rise up to this challenge by fusing features into multiple subsets based on correlations and using hybrid classification techniques that extract spatial and temporal characteristics. This often requires high computational cost and manual support that limit them for real-time processing of network traffic. To address this, we propose a new novel feature extraction method based on covariance matrices that extract spatial-temporal characteristics of network traffic data for detecting malicious network traffic behavior. The covariance matrices in our proposed method not just naturally encode the mutual relationships between different network traffic values but also have well-defined geometry that falls in the Riemannian manifold. Riemannian manifold is embedded with distance metrics that facilitate extracting discriminative features for detecting malicious network traffic. We evaluated our model on NSL-KDD and UNSW-NB15 datasets and showed our proposed method significantly outperforms the conventional method and other existing studies on the dataset.


翻译:网络流量数据是不同网络协议下不同数据字节包的组合。 这些流量包具有复杂的时间变化非线性关系。 现有的最先进的方法通过根据相关关系和采用提取空间和时间特性的混合分类技术将特征化成多个子集,从而应对这一挑战。 这往往需要高计算成本和人工支持,从而限制网络流量的实时处理。 为了解决这个问题,我们提出了一种新的基于共变矩阵的新型特征提取方法,该方法提取网络流量数据的空间时空特性,以发现恶意网络流量行为。 我们拟议方法中的变量矩阵不仅自然地将不同网络流量值之间的相互关系编码起来,而且还有位于里曼多元中的明确界定的几何测量方法。 里曼多元与远程计量器相结合,有助于提取识别恶意网络流量的歧视性特征。 我们用NSL-KDD和UNSW-NB15数据集对模型进行了评估,并展示了我们拟议的方法大大超出常规方法和数据集上的其他现有研究。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
44+阅读 · 2020年12月18日
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Object detection on aerial imagery using CenterNet
Arxiv
6+阅读 · 2019年8月22日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
9+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
3+阅读 · 2017年11月21日
VIP会员
相关资讯
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员