Finding a Maximum Clique is a classic property test from graph theory; find any one of the largest complete subgraphs in an Erd{\"o}s-R{\'e}nyi $G(N,p)$ random graph. It is the simplest of many such problems in which algorithms requiring only a small power of $N$ steps cannot reach solutions which probabilistic arguments show must exist, exposing an inherently "hard" phase within the solution space of the problem. Such "hard" phases are seen in many NP-Complete problems, in the limit when $N \to \infty$. But optimization problems arise and must be solved at finite N. We use this simplest case, MaxClique, to explore the structure of the problem as a function of $N$ and $K$, the clique size. It displays a complex phase boundary, a staircase of steps at each of which $2 \log_2N$ and $K_{\text{max}}$, the maximum size of clique that can be found, increase by $1$. Each of its boundaries have finite width, and these widths allow local algorithms to find cliques beyond the limits defined by the study of infinite systems. We explore the performance of a number of extensions of traditional fast local algorithms, and find that much of the "hard" space remains accessible at finite $N$. The "hidden clique" problem embeds a clique somewhat larger than those which occur naturally in a $G(N,p)$ random graph. Since such a clique is unique, we find that local searches which stop early, once evidence for the hidden clique is found, may outperform the best message passing or spectral algorithms.


翻译:找到一个最大 Clique 是来自图形理论的经典属性测试; 在 Exdrug 理论中找到任何最大的完整的子集 。 在 ERD $\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ n\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\每个“ 最简单的” 最简单的子系统问题中, 最简单的系统可以找到一个“ 本地的系统, 最细的 最细的, 最细的, 最细的, 最细的, 最细的, 最细的, 最细的, 最细的, 最细的 最细的 的 的 的 最细的 的 的 的 的 的 的 的 的, 最细的 最细的 最细的

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
0+阅读 · 2022年10月20日
Proof of Unlearning: Definitions and Instantiation
Arxiv
0+阅读 · 2022年10月20日
Arxiv
12+阅读 · 2021年3月24日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员