This paper considers how to obtain MCMC quantitative convergence bounds which can be translated into tight complexity bounds in high-dimensional {settings}. We propose a modified drift-and-minorization approach, which establishes generalized drift conditions defined in subsets of the state space. The subsets are called the "large sets", and are chosen to rule out some "bad" states which have poor drift property when the dimension of the state space gets large. Using the "large sets" together with a "fitted family of drift functions", a quantitative bound can be obtained which can be translated into a tight complexity bound. As a demonstration, we analyze several Gibbs samplers and obtain complexity upper bounds for the mixing time. In particular, for one example of Gibbs sampler which is related to the James--Stein estimator, we show that the number of iterations required for the Gibbs sampler to converge is constant under certain conditions on the observed data and the initial state. It is our hope that this modified drift-and-minorization approach can be employed in many other specific examples to obtain complexity bounds for high-dimensional Markov chains.


翻译:本文探讨了如何获得 MCMC 量化趋同界限, 并可以在高维 { sections} 中转换为严格复杂界限 。 我们建议采用修改的漂移和最小化方法, 确定国家空间子集中定义的普遍漂移条件 。 子集被称为“ 大型组 ”, 并选择排除一些“ 坏” 国家空间尺寸大时, 漂移属性差的“ 坏” 国家。 使用“ 大型组 ” 和“ 适合的漂移函数组 ”, 数量组可以 转换成 紧复杂界限 。 作为示范, 我们分析数个 Gibbs 采样器, 并获得混合时间的复杂上限 。 特别是一个与 James- Stein 估计器有关的 Gibs 取样器的例子, 我们显示, 在所观察到的数据和初始状态的某些条件下, Gibs 取样器所需的迭代数是恒定不变的。 我们希望, 这种修改的漂移和最小化方法可以在许多其他具体例子中使用, 来获得高维的 Markov 链的复杂界限 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Normalizing Flows入门(上)
AINLP
8+阅读 · 2020年8月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月7日
Arxiv
0+阅读 · 2022年1月3日
VIP会员
相关资讯
Normalizing Flows入门(上)
AINLP
8+阅读 · 2020年8月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员