Multimodal large language models (MLLMs) have shown impressive capabilities in vision-language tasks such as reasoning segmentation, where models generate segmentation masks based on textual queries. While prior work has primarily focused on perturbing image inputs, semantically equivalent textual paraphrases-crucial in real-world applications where users express the same intent in varied ways-remain underexplored. To address this gap, we introduce a novel adversarial paraphrasing task: generating grammatically correct paraphrases that preserve the original query meaning while degrading segmentation performance. To evaluate the quality of adversarial paraphrases, we develop a comprehensive automatic evaluation protocol validated with human studies. Furthermore, we introduce SPARTA-a black-box, sentence-level optimization method that operates in the low-dimensional semantic latent space of a text autoencoder, guided by reinforcement learning. SPARTA achieves significantly higher success rates, outperforming prior methods by up to 2x on both the ReasonSeg and LLMSeg-40k datasets. We use SPARTA and competitive baselines to assess the robustness of advanced reasoning segmentation models. We reveal that they remain vulnerable to adversarial paraphrasing-even under strict semantic and grammatical constraints. All code and data will be released publicly upon acceptance.
翻译:多模态大语言模型(MLLMs)在视觉语言任务中展现出卓越的能力,例如推理分割,即模型根据文本查询生成分割掩码。先前的研究主要集中于扰动图像输入,而语义等价的文本释义——在实际应用中用户以不同方式表达相同意图的关键因素——仍未得到充分探索。为填补这一空白,我们引入了一种新颖的对抗性释义任务:生成语法正确、保留原始查询含义但降低分割性能的释义。为评估对抗性释义的质量,我们开发了一套全面的自动评估协议,并通过人工研究验证。此外,我们提出了SPARTA——一种黑盒、句子级的优化方法,在文本自编码器的低维语义潜在空间中运行,以强化学习为指导。SPARTA在ReasonSeg和LLMSeg-40k数据集上取得了显著更高的成功率,优于先前方法达2倍。我们利用SPARTA和竞争性基线评估了先进推理分割模型的鲁棒性。我们发现,即使在严格的语义和语法约束下,这些模型仍易受对抗性释义攻击。所有代码和数据将在论文被接受后公开。