As the number of Persons with Disabilities (PWD), particularly those with one or more physical impairments, increases, there is an increasing demand for assistive robotic technologies that can support independent mobility in the built environment and reduce the burden on caregivers. Current assistive mobility platforms (e.g., robotic wheelchairs) often fail to incorporate user preferences and control, leading to reduced trust and efficiency. Existing shared control algorithms do not allow the incorporation of the user control preferences inside the navigation framework or the path planning algorithm. In addition, existing dynamic local planner algorithms for robotic wheelchairs do not take into account the social spaces of people, potentially leading such platforms to infringe upon these areas and cause discomfort. To address these concerns, this work introduces a novel socially-aware shared autonomy-based navigation system for assistive mobile robotic platforms. Our navigation framework comprises a Global Planner and a Local Planner. To implement the Global Planner, the proposed approach introduces a novel User Preference Field (UPF) theory within its global planning framework, explicitly acknowledging user preferences to adeptly navigate away from congested areas. For the Local Planner, we propose a Socially-aware Shared Control-based Model Predictive Control with Dynamic Control Barrier Function (SS-MPC-DCBF) to adjust movements in real-time, integrating user preferences for safer, more autonomous navigation. Evaluation results show that our Global Planner aligns closely with user preferences compared to baselines, and our Local Planner demonstrates enhanced safety and efficiency in dynamic and static scenarios. This integrated approach fosters trust and autonomy, crucial for the acceptance of assistive mobility technologies in the built environment.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2023年5月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员